Feature extraction for proteomics imaging mass spectrometry data

نویسندگان

  • Lyron J. Winderbaum
  • Inge Koch
  • Ove J. R. Gustafsson
  • Stephan Meding
  • Peter Hoffmann
چکیده

Imaging mass spectrometry (IMS) has transformed proteomics by providing an avenue for collecting spatially distributed molecular data. Functional data acquired with matrix assisted laser desorption ionization (MALDI) IMS consist of tens of thousands of spectra, measured at regular grid points across the surface of a tissue section. Unlike the more standard liquid chromatography mass spectrometry, MALDI-IMS preserves the spatial information inherent in

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature extraction and dimensionality reduction for mass spectrometry data

Mass spectrometry is being used to generate protein profiles from human serum, and proteomic data obtained from mass spectrometry have attracted great interest for the detection of early stage cancer. However, high dimensional mass spectrometry data cause considerable challenges. In this paper we propose a feature extraction algorithm based on wavelet analysis for high dimensional mass spectrom...

متن کامل

A general-purpose baseline estimation algorithm for spectroscopic data.

A common feature of many modern technologies used in proteomics--including nuclear magnetic resonance imaging and mass spectrometry--is the generation of large amounts of data for each subject in an experiment. Extracting the signal from the background noise, however, poses significant challenges. One important part of signal extraction is the correct identification of the baseline level of the...

متن کامل

Statistical Methods for Proteomic Biomarker Discovery based on Feature Extraction or Functional Modeling Approaches.

In recent years, developments in molecular biotechnology have led to the increased promise of detecting and validating biomarkers, or molecular markers that relate to various biological or medical outcomes. Proteomics, the direct study of proteins in biological samples, plays an important role in the biomarker discovery process. These technologies produce complex, high dimensional functional an...

متن کامل

A New Hybrid Feature Subset Selection Algorithm for the Analysis of Ovarian Cancer Data Using Laser Mass Spectrum

Introduction: Amajor problem in the treatment of cancer is the lack of an appropriate method for the early diagnosis of the disease. The chemical reaction within an organ may be reflected in the form of proteomic patterns in the serum, sputum, or urine. Laser mass spectrometry is a valuable tool for extracting the proteomic patterns from biological samples. A major challenge in extracting such ...

متن کامل

Technical Report: NITPICK: peak identification for mass spectrometry data

Background: The reliable extraction of features from mass spectra is a fundamental step in the automated analysis of proteomic mass spectrometry (MS) experiments. Results: This contribution proposes a sparse template regression approach to peak picking called NITPICK. NITPICK is a Non-greedy, Iterative Template-based peak PICKer that deconvolves complex overlapping isotope distributions in mult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014